Generalization of the Erdos-Gallai Inequality
نویسنده
چکیده
P. Erdős and T. Gallai gave necessary and sufficient conditions for a sequence of non-negative integers to be graphic. Here,their result is generalized to multigraphs with a specified multiplicity. This both generalizes and provides a new proof of a result in the literature by Chungphaisan [2].
منابع مشابه
A note on a theorem of Erdös & Gallai
We show that the Erdos-Gallai condition characterizing graphical degree sequences of length p needs to be checked only for as many n as there are distinct terms in the sequence, not all n, 1 6 n 6 p. MSC: 05 C07
متن کاملOn the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications
In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.
متن کاملA short constructive proof of the Erdos-Gallai characterization of graphic lists
Erdős and Gallai proved that a nonincreasing list (d1, . . . , dn) of nonnegative integers is the list of degrees of a graph (with no loops or multi-edges) if and only if the sum is even and the list satisfies ∑k i=1 di ≤ k(k−1)+ ∑n i=k+1 min{k, di} for 1 ≤ k ≤ n. We give a short constructive proof of the characterization. AMS Subject classification: 05C07
متن کاملIdentity Testing for Depth-3 Circuits with Small Fan-in
4 History of the Sylvester-Gallai Problem 6 4.1 Melchior’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.2 Motzkin’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.3 Kelly and Moser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.4 Green and Tao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.5 How to describe 3-color ...
متن کاملSome functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular ine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 98 شماره
صفحات -
تاریخ انتشار 2011